

After completing this lesson you will understand:
 About structures, initializing the structures and passing structures

as arguments into functions.
 To define a class and know about the access specifier: public and

private, defining a member function.
 To learn the difference between the structure and the class
 To study in detail about the constructors.

5.1 Structures
 5.1.1 Defining structures
 5.1.2 Initializing structures
 5.1.3 Structure as function arguments
5.2 Classes
 5.2.1 Defining a class
 5.2.2 Private and public members
 5.2.3 Assigning an object to another object

5.2.4 Accessor functions
5.2.5 Difference between structures and classes
5.2.6 Properties of classes

5.3 Constructors
 5.3.1 Calling a constructor
 5.3.2 Default constructor
5.4 Destructors
5.5 Summary
5.6 Technical Terms
5.7 Model questions
5.8 References

Lesson 5: Structures And
 Classes

Objectives

SSttrruuccttuurree OOff TThhee LLeessssoonn

Structures combine logically related data items into a single unit. The data
enclosed within a structure are known as members and they can be of
same type or different type. It is viewed as heterogeneous user-defined
data type.

A structure is a collection of variables of different data types grouped
under a common name. The syntax of structure is as follows:

 struct tag name
 {

data type1 member vari1
data type 2 member vari2
:
:
} ;

The keyword struct announces that it is a structure type definition. The
tag name gives the name of the structure. The identifiers inside the
braces are the member variables or of member names. The structure
should end with a semi colon (;). Structure definition can be placed inside
the main or before main function. After defining the structure definition, it
can be used just like a predefined data type.

 struct account

{
double balance;
double irate;
float term;
};
account acc1,acc2;

The structure variables can hold the values like any other variables. The
structure value is a collection of smaller values called the member values.
The smaller variables are called member variables.

5.1 Structures

5.1.1 Defining Structure

The member variables can be accessed by using the structure variable
followed by a dot(.), and then a member variable. Thus, the dot operator
is used to specify a member variable of a structure variable.
Syntax: structure variable name. Member variable

In the above example the structure account has three member variables:
balance, irate, term. acc1 and acc2 are structure variables of type
account. Then the member variables of acc1 are:

acc1.balance
acc1.irate
acc1.term
Similarly acc2 has the member variables.
acc2.balance
acc2.irate
acc2.term

The first two variables are of type double and the third variable is of type
float. The member variables can be assigned values using assignment
statements. They can be used like any other variable.

e.g.: acc1.balance = 1000.0; //initialization using assignment
 acc1.irate = 2.0;

acc1.term=2.0;
acc1.balance = acc1.balance + interest;
// arithmetic operation using structure variables.

The member variables can also be initialized during the declaration of the
structure variable. To give a structure variable a value, it is followed by
an equal sign and a list of member values enclosed within braces.

e.g.: struct date

{
int month;
int day;
int year;
};

Once the type date is defined, a structure variable birthday can be
initialized as follows:

date birthday = { 12,3,1969};

During initialization, the order of the initializing values should match with
the order of the member variables.

Then, birthday.month receives the value 12, birthday.day receives the
value 3 and birthday.year is initialized with the value 1969. The number of
member variables and the number of initializing values should be same.

Two or more structure types may use the same member names. The dot
operator and the structure variable specify to which structure the member
variable belongs.

eg: struct fertilizerstock

{ double quantity;
double nitrogencontent;

};
struct cropyield
{ int quantity;

double size; };
fertilizerstock super;
cropyield apples,oranges;

fertilizerstock and cropyield are two structures types. Super and apples
are variables of fertilizerstock and cropyield respectively. The quantity of
super fertilizer is stored in super.quantity and the quantity of apples are
stored in apples.quantity.

The structure value can be viewed as a collection of member values or a
single variable. The structure value of one structure variable can be
assigned to another structure variable using = sign. Thus a structure
variable can be assigned into another structure variable of the same type
by using an assignment operator.

If apples and oranges are two variables of type cropyield. Then

apples = oranges
is equivalent to

 apples.quantity = oranges.quantity;
 apples.size = oranges.size;

A structure can be initialized at the time of declaration. A structure
variable can be given a value, by giving an equal sign and a list of
member values enclosed in braces.

5.1.2 Initializing Structures

Eg:
 struct date
 {
 int month;
 int day;
 int year;
 };
date duedate = { 12,31,1999};

The initializing values should be given in order with the member variables
in the structure definition. If there are fewer initializing values than struct
members, the provided values are initialized data members, in order. The
remaining data members without initial values are initialized to a zero
value of an appropriate type of the variable.

Structures can be passed as arguments into functions. They can be
passed as call by value or call by reference arguments.

Eg: A program to input your birth date and to display it.

#include<iostream.h>
struct date //structure definition
{
int day;
int month;
int year;
};
void getdate(date&); //function prototypes
void putdate(date);
void main()
{
date bday;
getdate(bday);
putdate(bday);
return;
}
void getdate(date &bday)
{
cout<<"Day";
cin>> bday.day;
cout<<"Month";
cin>>bday.month;

5.1.3 Structures As Function Arguments

cout<<"Year";
cin>>bday.year;
}
void putdate (date bday)
{
cout<<"My birth day is on";
cout<<bday.day<<" "<<bday.month<<" "<<bday.year;
}

output:
Day3
Month12
Year69
My birth day is on3 12 69

Program to input your birth date and to display it in another way.

 #include<iostream.h>
#include<string.h>
struct date //structure definition
{
int day;
char month[15];
int year;
};

date getdate(int,char[],int);
void putdate(date);
void main()
{
date bday;
bday =getdate(15,"aug",1985);
putdate(bday);
}
date getdate(int x,char y[],int z)
{
date temp;
temp.day =x;
strcpy(temp.month,y);
temp.year=z;
return temp;
}
void putdate (date bday)
{

cout <<"my birth day is on";
cout<<bday.day<<" "<<bday.month<<" "<<bday.year;
}

output:
My birth day is on15 aug 1985

Classes are the basic language constructs of C++ for creating user
defined data types. They are syntactically an extension of structures.
Class follows the principle that the information about a module should be
private to the module unless it is specifically declared public.

A class is a data type whose variables are objects. Object is a variable
that has data values as well as member functions. Classes are created
using the keyword “class”. A class declaration defines a new data type
that links the code and the data. This data type is used to declare the
objects of that class. Hence class is a logical abstraction and an object is
a physical abstraction. The syntax of the class is

class classname
{
public:
member_specification1;
member_specification2;
member_specification3;
 .
 .
member_specificationk;
private:
member_specificationk+1;
member_specificationk+2;
 …………..
};

Public
members

Private
members

5.2 Classes

5.2.1 Defining A Class

keyword Name of the class

The class definition contains the data members and can have prototypes
of its member functions. The definition of the member function is given
elsewhere, the class definition ends with a semicolon.

A sample class definition is given in the program below.

Program to demonstrate an example of classes

#include<iostream.h>
class dayofyear
{
public:

 void output();// member function prototype
 int month;
 int day;

};

int main()
{
dayofyear today,birthday;
cout<<”Enter today’s date\n”<<”Enter month as number:”;
cin>>today.month;
cout<<”Enter day of the month:”;
cin>>today.day;
cout<<”Enter your birthdate:\n”<<”Enter month as
number:”;
cin>>birthday.month;
cout<<”Enter day of the month:”;
cin>>birthday.day;
cout<<”Today’s date is “;
today.output();
cout<<”Your birthday is “;
birthday.output();
if (today.month == birthday.month && today.day ==
birthday.day)
cout<<”Happy Birthday!\n”;
else
cout<<”Good day!”;
return 0;
}
void dayofyear::output()
{
 cout<<”month =”<<month<<”,day = “<<day<<endl;

}

output:
Day3
Month12
Year69
my birth day is on3 12 69my birth day is on15 aug
1985Enter today's date
Enter month as number:12
Enter day of the month:3
Enter your birthdate:
Enter month as number:1
Enter day of the month:3
Today's date is month =12,day = 3
Your birthday is month =1,day = 3
Good day!

The type dayofyear defined is a class definition for objects whose values
are dates. The member variables month and day stores the month and
day of the year in integers. There is a member function called output,
whose prototype is given in the definition. A class definition may contain
the function prototype or the function definition. Two objects called today
and birthday of data type day of year are declared. The member function
output can be called with the object today or birthday as:

today.output();
birthday.output();

When a member function is defined the definition must include class
name because there may be two or more classes that have member
functions with the same class name. The member function is defined in
the same way as any other function except the class name and the scope
resolution operator are given in the function heading. The (.) dot operator
and (::) scope resolution operators are used to tell which class the
member belongs to. The scope resolution operator is used with class
name, whereas the dot operator is used with the objects. The following
function call will output the data values stored in the object today:

today.output();

The scope resolution operator specifies that the function output() belongs
to the class dayofyear.

 The class name that precedes the scope resolution operator is known as
type qualifier because it specializes the function to one type of class. The
member function is defined the same way as any other function except
that the class name and scope resolution operator (::) are given in the
function heading. The syntax of member functions is as follows.

Syntax:

Returntype classname :: function name(parameter list)
{
function body;
}
eg:
//uses iostream.h
void dayofyear::output()
{
 cout<<”month =”<<month<<”,day = “<<endl;
}

All the member variables and member functions, which are listed after
keyword private in the class definition, are called private members of the
class. When a variable is defined as private, it cannot be directly
accessed in the program except within the definition of the member
function. If it is accessed from the main program, an error message is
given. When they are declared as public in the class definition, they can
be accessed anywhere throughout the program. If private or public are
not declared the compiler will take a default access specifier ie., private.

Program to demonstrate a simple example of a class

#include<iostream.h>
class dayofyear
{
public:
 void input();
 void output();// member function prototype
 void set(int newmonth, int newday);
//Precondition:newmonth and newday take integer values
of //month and day of the date
//Postcondition:The data is reset according to the
arguments
int getmonth();

5.2.2 Public And Private Members

//Returns the month of its corresponding date object.
int getday();
//Returns the day of the month
private:

int month;

 int day;

};

int main()
{
dayofyear today,birthday;
cout<<”Enter today’s date\n”;
today.input();
cout<<”Todays date is :”;
today.output();
birthday.set(3,21);
cout<<”Birthday:”;
birthday.output();
if (today.getmonth() == birthday.getmonth() &&
today.getday() == birthday.getday())
cout<<”Happy Birthday!\n”;
else
cout<<”Good day!”;
return 0;
}
//Memberfunction definitions
void dayofyear::input()
{
cout<<”Enter the month as a number:”;
cin>>month;
cout<<”Enter the day of the month:”;
cin>>day;
}
void dayofyear::output()
{
 cout<<”month =”<<month<<”,day = “<<day<<endl;
}

void dayofyear::set(int newmonth, int newday)
{
month = newmonth;
day = newday;
}

Private
members

int dayofyear::getmonth()
{
return month;
}

int dayofyear::getday()
{
return day;
}

output:
Enter today's date
Enter the month as a number:1
Enter the day of the month:2
Todays date is :month =1,day = 2
Birthday:month =3,day = 21
Good day!

To assign one object to another object we can use an assignment
operator. The member variables of the source object, is copied into the
target object.

 birthday = today;
It works as follows:
birthday.month = today.month;
birthday.day = today.day;

Accessor functions are public functions of a class, which returns the
private variables of the class. These functions provide some kind of
access to the private variables and hence are called accessor functions.
e.g:

int dayofyear::getmonth()
{
return month;
}

int dayof year::getday()
{
return day;
}

5.2.4 Accessor Functions

As month and day cannot be directly accessed from the main program a
function to return these values are written.
e.g: //This is illegal as month and day are private variables

if (today.month == birthday.month && today.day == birthday.day)

cout<<”Happy Birthday!\n”;
else
cout<<”Good day!”;
This can be modified to:
//This is legal

if (today.getmonth() == birthday.getmonth() && today.getday() ==
birthday.getday())

cout<<”Happy Birthday!\n”;
else
cout<<”Good day!”;

}

Structures are normally used with all the member variables as public and
with no member functions. A class contains member variables and
member functions. The member variables and member functions can be
declared as private or public. By default the members of structure are
public and the members of a class are private. But at least one member
function of the class should be defined as public function.

 Classes have both member variables and member functions.
 A member of a class may be public or private.
 By default all the members of a class are labeled as private

members.
 A private member of a class cannot be used elsewhere except

within the definition of the member functions of the class. The
name of the member functions for a class can be overloaded just
like any other function.

 A class may use (any) another class type as its member variables.
 A function may have formal parameters of class type.
 A function may return an object of class type.

5.2.5 Difference Between Structures And Classes

5.2.6 Properties Of A Class

DDeeffiinniinngg AA CCoonnssttrruuccttoorr :: A constructor is a special type of member
function defined in the class definition. It is used to initialize all or some of
the member variables of the objects in the class.

A constructor is automatically called when an object of its associated
class is declared.

A constructor must have the same name as the class name. A
constructor definition cannot return any value. A constructor should be
placed in the public section of the class definition.

The definition of a constructor can be given in the same way as a
member function.

A constructor is declared and defined as follows:

// constructors defined outside the class
class integer
 {
 int m,n;
 public:

integer();//default constructor declared
 integer(int m,int n);//parameterized constructor ………..

 ………..
};

integer::integer() //constructor defined
{
 m=0;n=0;
}

integer::integer(int x, int y)
 {
 m = x;
 n = y;
 }

 The constructor can also be defined when it is declared in the
class definition itself.

5.3 Constructors

//class with constructor
class integer
 {
 int m,n;
 public:

integer()
{
 m=0;
 n=0;
}

 integer(int x, int y)
 {
 m = x;
 n = y;

 } ………..
 ………..

};

When a class contains a constructor like the one defined as above, the
object created by the class is automatically initialized.

For example, the declaration, integer n1;//object n1 is created
not only creates the object int1 of type integer but also initializes its data
members m and n to zero. There is no need to write any statement to
invoke the constructor. The constructor is automatically called when the
object is declared.

Constructor cannot be called like a member function.
eg: n1.integer(15,10);//illegal

When constructors are defined, an object cannot be declared with no
arguments.The arguments must be added or a new constructor should be
defined with no arguments.

A constructor with no arguments is called default constructor. If no
constructor is defined, the compiler will generate a default constructor.

5.3.1 Calling A Constructor

5.3.2 Default Constructor

 If the user defines at least one constructor, then C++ will not generate
any other constructor. If we do not want to initialize the default constructor
with any values then an empty body can be defined.
 integer()
{
}

Constructor can be called explicitly using an assignment operator.
e.g.: integer n1 = integer(10,5);//explicit call

Constructor can be called implicitly.
e.g.: integer int1(10,5);//implicit call

Constructor can be overloaded.In the above example, the constructor
integer is overloaded by defining it once with no arguments and the other
time by passing parameters. Thus it is overloaded.
e.g.:

class integer
 {
 int m,n;
 public:

integer();//default constructor declared
 integer(int m,int n);//parameterized constructor

 ………..
 ………..

};

Write a program to add, sub, and divide rational numbers.

#include<iostream.h>
#include<stdlib.h>
class rno
{
int num,den;
public:
rno(int n, int d)
{
if (d == 0)
exit(1);
num=n;
den=d;
}
rno()
{
num=0 , den = 1;
}

Overloaded
constructors

rno(int n)
{
num = n;
den = 1;
}
void add(rno rn1,rno rn2)
{
num=rn2.den*rn1.num+rn1.den*rn2.num;
den=rn2.den*rn1.den;
}
void sub(rno rn1, rno rn2)
{
num=rn2.den*rn1.num-rn1.den*rn2.num;
den=rn2.den*rn1.den;
}
void mul(rno rn1,rno rn2)
{
num=rn2.num*rn1.num;
den=rn2.den*rn1.den;
}
void div(rno rn1, rno rn2)
{
num= rn1.num* rn2.den;
den=rn2.num*rn1.den;
}
void show()
{
cout<<num<<"/"<<den<<"\n";
}
};
void main()
{
rno r1(2,3);//constructor with 2 arguments is called
rno r2(3);//constructor with one argument is called
rno r3;//default constructor is invoked;
r3.add(r1,r2);
cout<<"Rational number 1:";
r1.show();
cout<<"Rational number 2:";
r2.show();
cout<<"Sum:";
r3.show();
cout<<"Subtraction:";
r3.sub(r1,r2);
r3.show();

cout<<"Multiplication:";
r3.mul(r1,r2);
r3.show();
cout<<"Division:";
r3.div(r1,r2);
r3.show();
}

output:

Rational number 1:2/3
Rational number 2:3/1
Sum:11/3
Subtraction:-7/3
Multiplication:6/3
Division:2/9

A destructor is used to destroy the objects that have been created by the
constructor. A destructor is a member function whose name is same as
the class name but is preceded by a tilde. For example the destructor for
the class integer can be defined as follows:
 ~integer(){ }

A destructor never takes any argument nor does it return any value. It will
be invoked implicitly by the compiler upon exit from the program(or block
or function as the case may be) to clean up the storage that is no longer
accessible.
Note: Whenever memory is allocated dynamically using new operator in
the constructors, delete operator should be used to free the memory. This
is required because when the pointers go out of scope, a destructor is not
called implicitly.

Program to demonstrate the destructors

#include<iostream.h>
int count=0;

class alpha
{

55..44 DDeessttrruuccttoorrss

public:
 alpha() //constructor
 {
 count++;
 cout<<"\nnumber of object created"<<count;
 }
 ~alpha()//destructor
 {
 cout<<"\nnumber of object destroyed"<<count;
 count--;
 }

};

int main()
{
 cout<<"\n\nenter main\n";
 alpha a1,a2,a3,a4;
 {
 cout<<"\n\nenter block1\n";
 alpha a5;
 }

 {
 cout<<"\n\nenter block2\n";
 alpha a6;
 }

 cout<<"\n\nre-enter main\n";

 return 0;
}

output:

enter main

number of object created1
number of object created2
number of object created3
number of object created4

enter block1

number of object created5

number of object destroyed5

enter block2

number of object created5
number of object destroyed5

re-enter main

number of object destroyed4
number of object destroyed3
number of object destroyed2
number of object destroyed1

 We have learnt how to define a structure and initialize the
structure and to pass structure as parameter to a function.

 The definition of class, the public and private members of the
class, how to assign an object to another object and accessor
functions are covered.

 The properties of the classes and the difference between the
structures and classes are learnt.

 The definition of constructor, the different types of constructors,
and overloading of constructors are covered in detail.

 The destructors are also covered.

Abstract data type: The data type in which the programmer do not have
access to the details of how the values and operations are implemented.

Constructor: A special member function for automatically creating an
instance of a class. This function has same name as the class.

Destructor: A function that is called to deallocate memory of objects of a
class.

5.5 Summary

5.6 Technical Terms

Data hiding: A property whereby the internal data structure of an object
is hidden from rest of the program. The data can be accessed by the
functions declared within the class.

Data member: A variable declared in the class.
Member function: A function declared within the class and not declared
as friend. These functions can have access to data members and define
operations that can be performed on the data.

Private member: A class member that is accessible only to the member
and friend functions of the class.

Public member: A class member that is accessible to all the users of the
class. The access is not restricted to member and friend functions. The
public member of the base class can be easily inherited by the derived
class.

1. What are the difference between classes and structures?

2. Explain the properties of classes.

3. What is a class? What is an object? Explain the definition of class,

its access specifiers with an example?

4. What are accessor functions?

5. What are the different types of constructors? Explain with

example.

6. What is overloading of constructor?

7. What is a default constructor?

8. What is a destructor?

5.7 Model Questions

Object-oriented programming with C++,
 by E. Bala Gurusamy.

Problem solving with C++
by Walter Savitch

Mastering C++
by K.R.Venugopal, RajkumarBuyya, T.RaviShankar

AUTHOR:

M. NIRUPAMA BHAT, MCA., M.Phil.,

 Lecturer,
Dept. Of Computer Science,

 JKC College,
GUNTUR.

5.8 References

